'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(and(tt(), X)) -> mark(X)
     , active(plus(N, 0())) -> mark(N)
     , active(plus(N, s(M))) -> mark(s(plus(N, M)))
     , active(and(X1, X2)) -> and(active(X1), X2)
     , active(plus(X1, X2)) -> plus(active(X1), X2)
     , active(plus(X1, X2)) -> plus(X1, active(X2))
     , active(s(X)) -> s(active(X))
     , and(mark(X1), X2) -> mark(and(X1, X2))
     , plus(mark(X1), X2) -> mark(plus(X1, X2))
     , plus(X1, mark(X2)) -> mark(plus(X1, X2))
     , s(mark(X)) -> mark(s(X))
     , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
     , proper(tt()) -> ok(tt())
     , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
     , proper(0()) -> ok(0())
     , proper(s(X)) -> s(proper(X))
     , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
     , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
     , s(ok(X)) -> ok(s(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(and(tt(), X)) -> c_0()
    , active^#(plus(N, 0())) -> c_1()
    , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))
    , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))
    , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
    , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
    , active^#(s(X)) -> c_6(s^#(active(X)))
    , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))
    , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))
    , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
    , s^#(mark(X)) -> c_10(s^#(X))
    , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
    , proper^#(tt()) -> c_12()
    , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
    , proper^#(0()) -> c_14()
    , proper^#(s(X)) -> c_15(s^#(proper(X)))
    , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
    , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
    , s^#(ok(X)) -> c_18(s^#(X))
    , top^#(mark(X)) -> c_19(top^#(proper(X)))
    , top^#(ok(X)) -> c_20(top^#(active(X)))}
  
  The usable rules are:
   {  active(and(tt(), X)) -> mark(X)
    , active(plus(N, 0())) -> mark(N)
    , active(plus(N, s(M))) -> mark(s(plus(N, M)))
    , active(and(X1, X2)) -> and(active(X1), X2)
    , active(plus(X1, X2)) -> plus(active(X1), X2)
    , active(plus(X1, X2)) -> plus(X1, active(X2))
    , active(s(X)) -> s(active(X))
    , plus(mark(X1), X2) -> mark(plus(X1, X2))
    , plus(X1, mark(X2)) -> mark(plus(X1, X2))
    , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
    , proper(tt()) -> ok(tt())
    , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
    , proper(0()) -> ok(0())
    , proper(s(X)) -> s(proper(X))
    , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
    , and(mark(X1), X2) -> mark(and(X1, X2))
    , s(mark(X)) -> mark(s(X))
    , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
    , s(ok(X)) -> ok(s(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
     ==> {s^#(ok(X)) -> c_18(s^#(X))}
   {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
     ==> {s^#(mark(X)) -> c_10(s^#(X))}
   {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
   {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
     ==> {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
   {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
     ==> {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
   {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
     ==> {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
   {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
     ==> {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
   {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
     ==> {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
   {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
     ==> {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
   {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
     ==> {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
   {active^#(s(X)) -> c_6(s^#(active(X)))}
     ==> {s^#(ok(X)) -> c_18(s^#(X))}
   {active^#(s(X)) -> c_6(s^#(active(X)))}
     ==> {s^#(mark(X)) -> c_10(s^#(X))}
   {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
   {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
     ==> {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
   {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
     ==> {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
   {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
     ==> {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
   {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
     ==> {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
   {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
     ==> {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
   {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
     ==> {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
   {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
     ==> {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
   {s^#(mark(X)) -> c_10(s^#(X))}
     ==> {s^#(ok(X)) -> c_18(s^#(X))}
   {s^#(mark(X)) -> c_10(s^#(X))}
     ==> {s^#(mark(X)) -> c_10(s^#(X))}
   {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
   {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
     ==> {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
   {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
     ==> {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
   {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
     ==> {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
   {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
     ==> {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
   {proper^#(s(X)) -> c_15(s^#(proper(X)))}
     ==> {s^#(ok(X)) -> c_18(s^#(X))}
   {proper^#(s(X)) -> c_15(s^#(proper(X)))}
     ==> {s^#(mark(X)) -> c_10(s^#(X))}
   {and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
   {and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
     ==> {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
   {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
     ==> {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
   {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
     ==> {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
   {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
     ==> {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
   {s^#(ok(X)) -> c_18(s^#(X))}
     ==> {s^#(ok(X)) -> c_18(s^#(X))}
   {s^#(ok(X)) -> c_18(s^#(X))}
     ==> {s^#(mark(X)) -> c_10(s^#(X))}
   {top^#(mark(X)) -> c_19(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_20(top^#(active(X)))}
   {top^#(mark(X)) -> c_19(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_19(top^#(proper(X)))}
   {top^#(ok(X)) -> c_20(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_20(top^#(active(X)))}
   {top^#(ok(X)) -> c_20(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_19(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_19(top^#(proper(X)))
       , top^#(ok(X)) -> c_20(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , top^#(mark(X)) -> c_19(top^#(proper(X)))
               , top^#(ok(X)) -> c_20(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(mark(X)) -> c_19(top^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , top^#(mark(X)) -> c_19(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [9]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_20(top^#(active(X)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(mark(X)) -> c_19(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_20(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  top^#(ok(X)) -> c_20(top^#(active(X)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(mark(X)) -> c_19(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [9]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [3]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [14]
                  c_19(x1) = [1] x1 + [2]
                  c_20(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(plus(N, 0())) -> mark(N)}
            and weakly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())
             , top^#(ok(X)) -> c_20(top^#(active(X)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(mark(X)) -> c_19(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(plus(N, 0())) -> mark(N)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [8]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [8]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(plus(N, 0())) -> mark(N)
             , proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())
             , top^#(ok(X)) -> c_20(top^#(active(X)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(mark(X)) -> c_19(top^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [6]
                  tt() = [2]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , top^#(ok(X)) -> c_20(top^#(active(X)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , top^#(mark(X)) -> c_19(top^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , top^#(ok(X)) -> c_20(top^#(active(X)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , top^#(mark(X)) -> c_19(top^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  active_0(3) -> 37
                 , active_0(4) -> 37
                 , active_0(6) -> 37
                 , active_0(9) -> 37
                 , tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , proper_0(3) -> 39
                 , proper_0(4) -> 39
                 , proper_0(6) -> 39
                 , proper_0(9) -> 39
                 , ok_0(3) -> 9
                 , ok_0(3) -> 39
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(6) -> 39
                 , ok_0(9) -> 9
                 , top^#_0(3) -> 35
                 , top^#_0(4) -> 35
                 , top^#_0(6) -> 35
                 , top^#_0(9) -> 35
                 , top^#_0(37) -> 36
                 , top^#_0(39) -> 38
                 , c_19_0(38) -> 35
                 , c_20_0(36) -> 35
                 , c_20_0(36) -> 38}
      
   2) {  active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
       , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
       , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
       , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
               , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
               , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
               , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
               , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [3]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [1]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
            and weakly orienting the rules
            {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [8]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {  active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
             , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [3]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [4]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
             , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [3]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
             , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [11]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [1]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
                 , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
                 , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))
                   , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
                   , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 2
                 , mark_0(2) -> 2
                 , 0_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , plus^#_0(2, 2) -> 1
                 , c_8_0(1) -> 1
                 , c_9_0(1) -> 1
                 , c_17_0(1) -> 1}
      
   3) {  active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
       , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
       , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
       , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
               , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
               , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
               , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
               , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [3]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [1]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
            and weakly orienting the rules
            {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [8]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {  active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
             , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [4]
                  c_5(x1) = [1] x1 + [3]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [4]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
             , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [1] x1 + [3]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
             , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [11]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
                 , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
                 , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))
                   , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
                   , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 2
                 , mark_0(2) -> 2
                 , 0_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , plus^#_0(2, 2) -> 1
                 , c_8_0(1) -> 1
                 , c_9_0(1) -> 1
                 , c_17_0(1) -> 1}
      
   4) {  proper^#(plus(X1, X2)) ->
         c_13(plus^#(proper(X1), proper(X2)))
       , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
       , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
       , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
               , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))
               , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
               , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [1]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [8]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [4]
                  c_9(x1) = [1] x1 + [8]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [2]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [1]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
            and weakly orienting the rules
            {  plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))
             , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [8]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [2]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
             , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))
             , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [15]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [8]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [2]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
                 , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))
                 , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , plus^#(X1, mark(X2)) -> c_9(plus^#(X1, X2))
                   , plus^#(mark(X1), X2) -> c_8(plus^#(X1, X2))
                   , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , plus^#(ok(X1), ok(X2)) -> c_17(plus^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , plus^#_0(3, 3) -> 19
                 , plus^#_0(3, 4) -> 19
                 , plus^#_0(3, 6) -> 19
                 , plus^#_0(3, 9) -> 19
                 , plus^#_0(4, 3) -> 19
                 , plus^#_0(4, 4) -> 19
                 , plus^#_0(4, 6) -> 19
                 , plus^#_0(4, 9) -> 19
                 , plus^#_0(6, 3) -> 19
                 , plus^#_0(6, 4) -> 19
                 , plus^#_0(6, 6) -> 19
                 , plus^#_0(6, 9) -> 19
                 , plus^#_0(9, 3) -> 19
                 , plus^#_0(9, 4) -> 19
                 , plus^#_0(9, 6) -> 19
                 , plus^#_0(9, 9) -> 19
                 , c_8_0(19) -> 19
                 , c_9_0(19) -> 19
                 , proper^#_0(3) -> 26
                 , proper^#_0(4) -> 26
                 , proper^#_0(6) -> 26
                 , proper^#_0(9) -> 26
                 , c_17_0(19) -> 19}
      
   5) {  active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))
       , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))
               , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [1]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
            and weakly orienting the rules
            {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [1]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
             , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [5]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
             , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [5]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
                 , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
                   , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , and^#_0(3, 3) -> 17
                 , and^#_0(3, 4) -> 17
                 , and^#_0(3, 6) -> 17
                 , and^#_0(3, 9) -> 17
                 , and^#_0(4, 3) -> 17
                 , and^#_0(4, 4) -> 17
                 , and^#_0(4, 6) -> 17
                 , and^#_0(4, 9) -> 17
                 , and^#_0(6, 3) -> 17
                 , and^#_0(6, 4) -> 17
                 , and^#_0(6, 6) -> 17
                 , and^#_0(6, 9) -> 17
                 , and^#_0(9, 3) -> 17
                 , and^#_0(9, 4) -> 17
                 , and^#_0(9, 6) -> 17
                 , and^#_0(9, 9) -> 17
                 , c_7_0(17) -> 17
                 , c_16_0(17) -> 17}
      
   6) {  active^#(s(X)) -> c_6(s^#(active(X)))
       , s^#(ok(X)) -> c_18(s^#(X))
       , s^#(mark(X)) -> c_10(s^#(X))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(s(X)) -> c_6(s^#(active(X)))
               , s^#(ok(X)) -> c_18(s^#(X))
               , s^#(mark(X)) -> c_10(s^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {s^#(mark(X)) -> c_10(s^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s^#(mark(X)) -> c_10(s^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [9]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(s(X)) -> c_6(s^#(active(X)))}
            and weakly orienting the rules
            {s^#(mark(X)) -> c_10(s^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(s(X)) -> c_6(s^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , s^#(ok(X)) -> c_18(s^#(X))}
            and weakly orienting the rules
            {  active^#(s(X)) -> c_6(s^#(active(X)))
             , s^#(mark(X)) -> c_10(s^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s^#(ok(X)) -> c_18(s^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , s^#(ok(X)) -> c_18(s^#(X))
             , active^#(s(X)) -> c_6(s^#(active(X)))
             , s^#(mark(X)) -> c_10(s^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , s^#(ok(X)) -> c_18(s^#(X))
                 , active^#(s(X)) -> c_6(s^#(active(X)))
                 , s^#(mark(X)) -> c_10(s^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , s^#(ok(X)) -> c_18(s^#(X))
                   , active^#(s(X)) -> c_6(s^#(active(X)))
                   , s^#(mark(X)) -> c_10(s^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , s^#_0(3) -> 15
                 , s^#_0(4) -> 15
                 , s^#_0(6) -> 15
                 , s^#_0(9) -> 15
                 , c_10_0(15) -> 15
                 , c_18_0(15) -> 15}
      
   7) {  proper^#(s(X)) -> c_15(s^#(proper(X)))
       , s^#(ok(X)) -> c_18(s^#(X))
       , s^#(mark(X)) -> c_10(s^#(X))}
      
      The usable rules for this path are the following:
      {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , proper^#(s(X)) -> c_15(s^#(proper(X)))
               , s^#(ok(X)) -> c_18(s^#(X))
               , s^#(mark(X)) -> c_10(s^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s^#(ok(X)) -> c_18(s^#(X))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s^#(ok(X)) -> c_18(s^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(s(X)) -> c_15(s^#(proper(X)))}
            and weakly orienting the rules
            {  s^#(ok(X)) -> c_18(s^#(X))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(s(X)) -> c_15(s^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s^#(mark(X)) -> c_10(s^#(X))}
            and weakly orienting the rules
            {  proper^#(s(X)) -> c_15(s^#(proper(X)))
             , s^#(ok(X)) -> c_18(s^#(X))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s^#(mark(X)) -> c_10(s^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [8]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [7]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  s^#(mark(X)) -> c_10(s^#(X))
             , proper^#(s(X)) -> c_15(s^#(proper(X)))
             , s^#(ok(X)) -> c_18(s^#(X))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [2]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [14]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [15]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , s^#(mark(X)) -> c_10(s^#(X))
                 , proper^#(s(X)) -> c_15(s^#(proper(X)))
                 , s^#(ok(X)) -> c_18(s^#(X))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , s^#(mark(X)) -> c_10(s^#(X))
                   , proper^#(s(X)) -> c_15(s^#(proper(X)))
                   , s^#(ok(X)) -> c_18(s^#(X))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , s^#_0(3) -> 15
                 , s^#_0(4) -> 15
                 , s^#_0(6) -> 15
                 , s^#_0(9) -> 15
                 , c_10_0(15) -> 15
                 , proper^#_0(3) -> 26
                 , proper^#_0(4) -> 26
                 , proper^#_0(6) -> 26
                 , proper^#_0(9) -> 26
                 , c_18_0(15) -> 15}
      
   8) {  proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
       , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
               , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [1]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [8]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [1]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_7(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [8]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  and^#(mark(X1), X2) -> c_7(and^#(X1, X2))
             , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [4]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [5]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))
                 , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , and^#(mark(X1), X2) -> c_7(and^#(X1, X2))
                   , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , and^#(ok(X1), ok(X2)) -> c_16(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , and^#_0(3, 3) -> 17
                 , and^#_0(3, 4) -> 17
                 , and^#_0(3, 6) -> 17
                 , and^#_0(3, 9) -> 17
                 , and^#_0(4, 3) -> 17
                 , and^#_0(4, 4) -> 17
                 , and^#_0(4, 6) -> 17
                 , and^#_0(4, 9) -> 17
                 , and^#_0(6, 3) -> 17
                 , and^#_0(6, 4) -> 17
                 , and^#_0(6, 6) -> 17
                 , and^#_0(6, 9) -> 17
                 , and^#_0(9, 3) -> 17
                 , and^#_0(9, 4) -> 17
                 , and^#_0(9, 6) -> 17
                 , and^#_0(9, 9) -> 17
                 , c_7_0(17) -> 17
                 , proper^#_0(3) -> 26
                 , proper^#_0(4) -> 26
                 , proper^#_0(6) -> 26
                 , proper^#_0(9) -> 26
                 , c_16_0(17) -> 17}
      
   9) {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [1] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(plus(X1, X2)) -> c_4(plus^#(active(X1), X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , plus^#_0(3, 3) -> 19
                 , plus^#_0(3, 4) -> 19
                 , plus^#_0(3, 6) -> 19
                 , plus^#_0(3, 9) -> 19
                 , plus^#_0(4, 3) -> 19
                 , plus^#_0(4, 4) -> 19
                 , plus^#_0(4, 6) -> 19
                 , plus^#_0(4, 9) -> 19
                 , plus^#_0(6, 3) -> 19
                 , plus^#_0(6, 4) -> 19
                 , plus^#_0(6, 6) -> 19
                 , plus^#_0(6, 9) -> 19
                 , plus^#_0(9, 3) -> 19
                 , plus^#_0(9, 4) -> 19
                 , plus^#_0(9, 6) -> 19
                 , plus^#_0(9, 9) -> 19}
      
   10)
      {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [6]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [8]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [3]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(and(X1, X2)) -> c_3(and^#(active(X1), X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , and^#_0(3, 3) -> 17
                 , and^#_0(3, 4) -> 17
                 , and^#_0(3, 6) -> 17
                 , and^#_0(3, 9) -> 17
                 , and^#_0(4, 3) -> 17
                 , and^#_0(4, 4) -> 17
                 , and^#_0(4, 6) -> 17
                 , and^#_0(4, 9) -> 17
                 , and^#_0(6, 3) -> 17
                 , and^#_0(6, 4) -> 17
                 , and^#_0(6, 6) -> 17
                 , and^#_0(6, 9) -> 17
                 , and^#_0(9, 3) -> 17
                 , and^#_0(9, 4) -> 17
                 , and^#_0(9, 6) -> 17
                 , and^#_0(9, 9) -> 17}
      
   11)
      {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(plus(X1, X2)) -> c_5(plus^#(X1, active(X2)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , plus^#_0(3, 3) -> 19
                 , plus^#_0(3, 4) -> 19
                 , plus^#_0(3, 6) -> 19
                 , plus^#_0(3, 9) -> 19
                 , plus^#_0(4, 3) -> 19
                 , plus^#_0(4, 4) -> 19
                 , plus^#_0(4, 6) -> 19
                 , plus^#_0(4, 9) -> 19
                 , plus^#_0(6, 3) -> 19
                 , plus^#_0(6, 4) -> 19
                 , plus^#_0(6, 6) -> 19
                 , plus^#_0(6, 9) -> 19
                 , plus^#_0(9, 3) -> 19
                 , plus^#_0(9, 4) -> 19
                 , plus^#_0(9, 6) -> 19
                 , plus^#_0(9, 9) -> 19}
      
   12)
      {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [2]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [15]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [11]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [1] x1 + [8]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , proper^#(plus(X1, X2)) -> c_13(plus^#(proper(X1), proper(X2)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , plus^#_0(3, 3) -> 19
                 , plus^#_0(3, 4) -> 19
                 , plus^#_0(3, 6) -> 19
                 , plus^#_0(3, 9) -> 19
                 , plus^#_0(4, 3) -> 19
                 , plus^#_0(4, 4) -> 19
                 , plus^#_0(4, 6) -> 19
                 , plus^#_0(4, 9) -> 19
                 , plus^#_0(6, 3) -> 19
                 , plus^#_0(6, 4) -> 19
                 , plus^#_0(6, 6) -> 19
                 , plus^#_0(6, 9) -> 19
                 , plus^#_0(9, 3) -> 19
                 , plus^#_0(9, 4) -> 19
                 , plus^#_0(9, 6) -> 19
                 , plus^#_0(9, 9) -> 19
                 , proper^#_0(3) -> 26
                 , proper^#_0(4) -> 26
                 , proper^#_0(6) -> 26
                 , proper^#_0(9) -> 26}
      
   13)
      {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [2]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [1] x1 + [1]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [15]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [11]
                  c_11(x1) = [1] x1 + [8]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , proper^#(and(X1, X2)) -> c_11(and^#(proper(X1), proper(X2)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , and^#_0(3, 3) -> 17
                 , and^#_0(3, 4) -> 17
                 , and^#_0(3, 6) -> 17
                 , and^#_0(3, 9) -> 17
                 , and^#_0(4, 3) -> 17
                 , and^#_0(4, 4) -> 17
                 , and^#_0(4, 6) -> 17
                 , and^#_0(4, 9) -> 17
                 , and^#_0(6, 3) -> 17
                 , and^#_0(6, 4) -> 17
                 , and^#_0(6, 6) -> 17
                 , and^#_0(6, 9) -> 17
                 , and^#_0(9, 3) -> 17
                 , and^#_0(9, 4) -> 17
                 , and^#_0(9, 6) -> 17
                 , and^#_0(9, 9) -> 17
                 , proper^#_0(3) -> 26
                 , proper^#_0(4) -> 26
                 , proper^#_0(6) -> 26
                 , proper^#_0(9) -> 26}
      
   14)
      {proper^#(s(X)) -> c_15(s^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
       , proper(0()) -> ok(0())
       , proper(s(X)) -> s(proper(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
               , proper(0()) -> ok(0())
               , proper(s(X)) -> s(proper(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , proper^#(s(X)) -> c_15(s^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(s(X)) -> c_15(s^#(proper(X)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(s(X)) -> c_15(s^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(tt()) -> ok(tt())
             , proper(0()) -> ok(0())}
            and weakly orienting the rules
            {  proper^#(s(X)) -> c_15(s^#(proper(X)))
             , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(tt()) -> ok(tt())
               , proper(0()) -> ok(0())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [8]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [8]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [8]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                 , proper(s(X)) -> s(proper(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  proper(tt()) -> ok(tt())
                 , proper(0()) -> ok(0())
                 , proper^#(s(X)) -> c_15(s^#(proper(X)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(plus(X1, X2)) -> plus(proper(X1), proper(X2))
                   , proper(s(X)) -> s(proper(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  proper(tt()) -> ok(tt())
                   , proper(0()) -> ok(0())
                   , proper^#(s(X)) -> c_15(s^#(proper(X)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , s^#_0(3) -> 15
                 , s^#_0(4) -> 15
                 , s^#_0(6) -> 15
                 , s^#_0(9) -> 15
                 , proper^#_0(3) -> 26
                 , proper^#_0(4) -> 26
                 , proper^#_0(6) -> 26
                 , proper^#_0(9) -> 26}
      
   15)
      {active^#(s(X)) -> c_6(s^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(and(tt(), X)) -> mark(X)
       , active(plus(N, 0())) -> mark(N)
       , active(plus(N, s(M))) -> mark(s(plus(N, M)))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(plus(X1, X2)) -> plus(active(X1), X2)
       , active(plus(X1, X2)) -> plus(X1, active(X2))
       , active(s(X)) -> s(active(X))
       , plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , s(mark(X)) -> mark(s(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , s(ok(X)) -> ok(s(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(plus(X1, X2)) -> plus(active(X1), X2)
               , active(plus(X1, X2)) -> plus(X1, active(X2))
               , active(s(X)) -> s(active(X))
               , plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , s(mark(X)) -> mark(s(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , s(ok(X)) -> ok(s(X))
               , active^#(s(X)) -> c_6(s^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [1]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(plus(N, 0())) -> mark(N)
             , active(plus(N, s(M))) -> mark(s(plus(N, M)))
             , active^#(s(X)) -> c_6(s^#(active(X)))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active(plus(N, 0())) -> mark(N)
               , active(plus(N, s(M))) -> mark(s(plus(N, M)))
               , active^#(s(X)) -> c_6(s^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(and(X1, X2)) -> and(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(active(X1), X2)
                 , active(plus(X1, X2)) -> plus(X1, active(X2))
                 , active(s(X)) -> s(active(X))
                 , plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , s(mark(X)) -> mark(s(X))
                 , s(ok(X)) -> ok(s(X))}
              Weak Rules:
                {  active(and(tt(), X)) -> mark(X)
                 , active(plus(N, 0())) -> mark(N)
                 , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                 , active^#(s(X)) -> c_6(s^#(active(X)))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(and(X1, X2)) -> and(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(active(X1), X2)
                   , active(plus(X1, X2)) -> plus(X1, active(X2))
                   , active(s(X)) -> s(active(X))
                   , plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , s(mark(X)) -> mark(s(X))
                   , s(ok(X)) -> ok(s(X))}
                Weak Rules:
                  {  active(and(tt(), X)) -> mark(X)
                   , active(plus(N, 0())) -> mark(N)
                   , active(plus(N, s(M))) -> mark(s(plus(N, M)))
                   , active^#(s(X)) -> c_6(s^#(active(X)))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  tt_0() -> 3
                 , mark_0(3) -> 4
                 , mark_0(4) -> 4
                 , mark_0(6) -> 4
                 , mark_0(9) -> 4
                 , 0_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , s^#_0(3) -> 15
                 , s^#_0(4) -> 15
                 , s^#_0(6) -> 15
                 , s^#_0(9) -> 15}
      
   16)
      {  active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))
       , s^#(ok(X)) -> c_18(s^#(X))
       , s^#(mark(X)) -> c_10(s^#(X))}
      
      The usable rules for this path are the following:
      {  plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))
               , s^#(ok(X)) -> c_18(s^#(X))
               , s^#(mark(X)) -> c_10(s^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [11]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  s^#(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [2]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , s^#(ok(X)) -> c_18(s^#(X))}
            and weakly orienting the rules
            {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , s^#(ok(X)) -> c_18(s^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [4]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [8]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s^#(mark(X)) -> c_10(s^#(X))}
            and weakly orienting the rules
            {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
             , s^#(ok(X)) -> c_18(s^#(X))
             , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s^#(mark(X)) -> c_10(s^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [8]
                  plus(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [2]
                  s^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))}
              Weak Rules:
                {  s^#(mark(X)) -> c_10(s^#(X))
                 , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , s^#(ok(X)) -> c_18(s^#(X))
                 , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))}
                Weak Rules:
                  {  s^#(mark(X)) -> c_10(s^#(X))
                   , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , s^#(ok(X)) -> c_18(s^#(X))
                   , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(4) -> 4
                 , mark_0(9) -> 4
                 , ok_0(4) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(4) -> 11
                 , active^#_0(9) -> 11
                 , s^#_0(4) -> 15
                 , s^#_0(9) -> 15
                 , c_10_0(15) -> 15
                 , c_18_0(15) -> 15}
      
   17)
      {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
      
      The usable rules for this path are the following:
      {  plus(mark(X1), X2) -> mark(plus(X1, X2))
       , plus(X1, mark(X2)) -> mark(plus(X1, X2))
       , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  plus(mark(X1), X2) -> mark(plus(X1, X2))
               , plus(X1, mark(X2)) -> mark(plus(X1, X2))
               , plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
               , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [10]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [4]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))}
            and weakly orienting the rules
            {active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [1] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  s^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  plus(mark(X1), X2) -> mark(plus(X1, X2))
                 , plus(X1, mark(X2)) -> mark(plus(X1, X2))}
              Weak Rules:
                {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                 , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  plus(mark(X1), X2) -> mark(plus(X1, X2))
                   , plus(X1, mark(X2)) -> mark(plus(X1, X2))}
                Weak Rules:
                  {  plus(ok(X1), ok(X2)) -> ok(plus(X1, X2))
                   , active^#(plus(N, s(M))) -> c_2(s^#(plus(N, M)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(4) -> 4
                 , mark_0(9) -> 4
                 , ok_0(4) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(4) -> 11
                 , active^#_0(9) -> 11
                 , s^#_0(4) -> 15
                 , s^#_0(9) -> 15}
      
   18)
      {active^#(and(tt(), X)) -> c_0()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           mark(x1) = [0] x1 + [0]
           plus(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           s^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_4(x1) = [0] x1 + [0]
           plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12() = [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(and(tt(), X)) -> c_0()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(tt(), X)) -> c_0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(tt(), X)) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  mark(x1) = [0] x1 + [0]
                  plus(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  s(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(and(tt(), X)) -> c_0()}
            
            Details:         
              The given problem does not contain any strict rules
      
   19)
      {active^#(plus(N, 0())) -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           mark(x1) = [0] x1 + [0]
           plus(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           s^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_4(x1) = [0] x1 + [0]
           plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12() = [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(plus(N, 0())) -> c_1()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(plus(N, 0())) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(plus(N, 0())) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [0] x1 + [0]
                  plus(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(plus(N, 0())) -> c_1()}
            
            Details:         
              The given problem does not contain any strict rules
      
   20)
      {proper^#(0()) -> c_14()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           mark(x1) = [0] x1 + [0]
           plus(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           s^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_4(x1) = [0] x1 + [0]
           plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12() = [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(0()) -> c_14()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(0()) -> c_14()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(0()) -> c_14()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [0] x1 + [0]
                  plus(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  s(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(0()) -> c_14()}
            
            Details:         
              The given problem does not contain any strict rules
      
   21)
      {proper^#(tt()) -> c_12()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           mark(x1) = [0] x1 + [0]
           plus(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           s^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_4(x1) = [0] x1 + [0]
           plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12() = [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(tt()) -> c_12()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(tt()) -> c_12()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(tt()) -> c_12()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  mark(x1) = [0] x1 + [0]
                  plus(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  s(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  s^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_4(x1) = [0] x1 + [0]
                  plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12() = [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(tt()) -> c_12()}
            
            Details:         
              The given problem does not contain any strict rules